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Abstract

Using ideas from an article of Bieliavsky, Rooman and Spindel on BTZ black holes, | construct
a family of interesting examples of quasi-Poisson actions as defined by Alekseev and Kosmann-
Schwarzbach. As an application, | obtain a genuine Poisson structure onRlwAich induces a
Poisson structure on a BTZ black hole.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In [4], Bieliavsky et al. construct a Poisson structure on massive non-rotating BTZ black
holes; in[3], Bieliavsky et al. construct a star product on the same black hole. The direction
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of this deformation is a Poisson bivector field which has the same symplectic leaves as the
Poisson bivector field of4]: roughly speaking, they correspond to orbits under a certain
twisted action by conjugation.

In the present paper, | wish to show how techniques usdd]im conjunction with
techniques of the theory of quasi-Poisson manifolds [524) can be used to construct an
interesting family of manifolds with a quasi-Poisson action and how a particular case of
this family leads to a genuine Poisson structure on a massive non-rotating BTZ black hole
with similar symplectic leaves as [4,3].

2. Main results

| will not recall here the basic definitions in the theory of quasi-Poisson manifolds and
quasi-Poisson actions. The reader will find these definitions in Alekseev and Kosmann-
Schwarzbacliil], and in Alekseev et aJ2].

Let G be a connected Lie group of dimensioandg its Lie algebra, on whicli acts by
the adjoint action Ad. Assume we are given an Ad-invariant non-degenerate bilinear form
K ong. For example, if5 is semi-simple, thek could be the Killing form. In the following,
| will denote byK again the linear isomorphism

g—g"

x— K(x, ).

Let D=G x G ando = g @ g its Lie algebra. Define an Ad-invariant non-degenerate
bilinear form¢, ) of signature £, n) by

Ix0=(g®g x (g9 — R
(()C, y)v ()C/, y/)) — K()C,)C/) - K(yv y/)

Assume there is an involution on G which induces an orthogonal involutive morphism,
again denoted by, ong. LetA, : G — D andA9 : G — D be given by

Av(g) = (g, 8)

and

A% (8) = (g, 0(g))-

Denote byG, andG¢ their respective images iD. Let S = D/G andS? = D/GY.
Then bothS andS? are isomorphic t@. The isomorphism betweehandG is induced by
the map

D— G
(g, h) —> gh_l,
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whereas the isomorphism betweghandG is induced by

D— G
(g, h) — go(h)™L.

I will use these two isomorphisms to identifyand G, and S° and G. Denote again by
Ay ig— oandAg : g — othe morphismsinduced by, : G — DandA% : G — D
respectively. Leti_ : g > 0 =g@ gandA? : g — 0 = g & g be defined by

A,(.X) = ()C, —)C),
and
A% (x) = (x, —o(x)).

Let g =Im(A_) and g =Im(A%). We have two quasi-triplesI}, G+, g—) and
(D, G, g?). They induce two structures of quasi-Poisson Lie grouoof respective
bivector fieldsPp and P3, and two structures of quasi-Poisson Lie grougionandG¢. of
respective bivector fieldBg andPGi . I will simply write G, respectivelyG?, to denote
the group together with its quasi-Poisson structure. Of course, these quasi-Poisson structures
are pairwise isomorphic. More precisely, the isomorphism kel : (g, #) —> (g, o(h)) of
D sendsPp on Pg, and vice-versa. This isomorphism can be used to deduce some of
the results given at the beginning of the present article from the results of Alekseev and
Kosmann-Schwarzbadh]; but it takes just as long to redo the computations, and that is
what | do here.

According tq1], the bivector fieldPp, respectivelyPy), is projectable onts, respectively
§°. Let Pg and Pg, be their respective projections. Using the identifications betWead
G, andS? andG, one can check thats and Pg, are the same bivector fields ¢h What
is more interesting, and what | will prove, is the following Theorem.

Theorem 2.1. The bivector field P}, is projectable onto S. Let P¢ be its projection. Identify
S with G and trivialise their tangent space using right translations, then for s in S and & in
g* = TS there is the following explicit formula

PS(5)(€) = 3(Adyy-1 — Ady) 0 0 0 KTH(E).

Moreover, the action
GIixS— S

+ (1)

(g, 5) — gso(g)™?

of G5 on (S, PS) is quasi-Poisson in the sense of Alekseev and Kosmann-Schwarzbach [1].
The image of P{(s), seen as a map T;S — TS, is tangent to the orbit through s of the
action of G° on§.
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In the setting of the above Theorem, the bivector fiefdis G° invariant; hence it is
a subgroup of5? andI is an F-invariant open subset ¢f such that the action af on I
is principal thenF\I is a smooth manifold ané§ descends to a bivector field on it. An
application of this remark is the following Theorem.

Theorem 2.2. Let G = SL(2, R). Let

1o
o -1

and choose o = Ady. Let

N

be an open subset of S. Let F be the following subgroup of G

u+x y-+t

y—t u—x

|u2—x2—y2+t2:1,t2—y2>0}

F = {exp@rH),n € N}.

The quotient F\I (together with an appropriate metric) is a model of massive non-rotating
BTZ black hole (see [4]). The bivector field it inherits following the above remark, is Poisson.
Its symplectic leaves consist of the projection to F\I of the orbits of the action of G° on S
except along the projection of the orbit of the identity. Along this orbit, the bivector field
vanishes and each point forms a symplectic leaf.

In the coordinates (46) of [4] (or (4)of the present article), the Poisson bivector field is

2costt (g) sin(c)sinh(p)d; A 9. 2)

The above Poisson bivector field should be compared with the one defifgdaimd given
by

1

——————0; A Op.

cosi(p/2)sink)

The symplectic leaves of this Poisson structure are the images under the prdieetion
F\I of the action ofGS on S. Considering the similarity between the above two Poisson
structures, it would be interesting to find an interpretation of this similarity from the black
hole point of view.

3. Let the computations begin

Throughout the present article, | will use the notations introduced in the previous Section.
To begin with, | will prove that D, G, g° ) does indeed form a quasi-triple.
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Because = g @ g, one also has a decompositioh= g* ® g*. One also has = g7 ®
g7 and accordingly* = g7* @ g”*. Denotepye andpg the projections on respectively
g% andg? induced by the decompositian= g9 @ g. So that } = Pgs + Py -

In this article, | express results using mostly the decompositieng & g. Using it, we
have

05" ={(E800)| Eeg”)

and

97" ={(&. —§00) | § g}
Proposition 3.1. The triple (D, G, g°) forms a quasi-triple in the sense of [1]. The char-
acteristic elements of this quasi-triple as defined in [1] and hereby denoted by j, ¥°, ¢° and

the r-matrix r§ are

jrelt — g

(£ £00) — A% 0 K71(§),
and

F =0,
and

¢ Nglt — R
(5 008). (.0 o). (.o om) > 2K(K~1(). [K7H&). K~(m)]).

and finally the r-matrix

ggeg —gdg
En)r— 347 o K"YE+noo0).

Notice here that it is crucial for to be of order no higher than 2, otherwise one would
fail to obtain a quasi-triple as in the above Proposition.

Proof. Itis straightforward to prove that= g7 @ g° and thatbotly? andg” are isotropic
in (9, ()). This proves thatlp, G°, g?) is a quasi-triple.
For ¢ £o00)ingl™ and , o(x)) in g%

(J(§ & 00), (x,0(x))) = (§ & 0 0)(x, o ().
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The mayy is actually characterised by this last property. The equality
(A7 0 K™t o ATH(E £ 0 0), (x,0(x)) = (& & 0 0)(x, 0(x)),

proves that
jEE00) =A% o Ko ATHE E00) = A7 0 KTH(E).

2Sinceo is a Lie algebra morphism, we havg?[, g°] C g%. This proves thatF” :
A 95" — g2, given by

FO(& n) = pge [ (&), j(m)],

vanishes.
I will now computeg?. It is defined as

¢°((§,008),(n,00m), (v,oov)) = (v,00v)0 pg ([j(§ 0 08), j(n,oon))
= (j(v,o0v),[j(§ 008&), j(n.non))
= (A% 0o K1), [AZ 0 K7H(8), AZ 0 K (m)])
= 2K(K1(v), [K7*(&), K~ ().
Finally, ther-matrix is defined as
gl @elt — gl @
((6.600),(n,noo0))—> (0, j(& &0 0)).
If (& n)isind* = g* & g* then its decomposition igf, * & g” *is (1/2)(6 +noo Eoo +
n), (€ — n oo, —£ o o +1n)). The result follows. [

| now wish to compute the bivectd? on D. By definition, it is equal torf§)* — (+3)”,
where the upper script means the left invariant section 6{7D ® TD) generated byg,
while the upper scripb means the right invariant section 5{7D ® TD) generated byj.
Proposition 3.2. Identify T;D t0 0 by right translations. The value of P}, atd = (a, b) is

V' =g"Dg-—>0=9gDg
(é, 17) —> %(Kil(n [eNoMe} (Adn(b)a_l — 1)), —Kﬁl(g [eNo e} (Adﬂ(a)b_l)))'

Proof. Fixd = (a, b) in D. | choose to trivialise the tangent bundle, and its dual) &y
using right translations. Segf(” as a map fronT* D to TD. If « is in ?*, then

(97 (d)(@”) = (5 (@)’ (d),
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whereas
M) (@”) = (Adg o r§ (@ 0 Ada)) (d).
Thus P, at the pointd = (a, b) is

V'=g"®gt—0=9dg
& n)— —%A_ o Kfl(“g“—i- noo)+ %Add oA_o K71($ o Ad, +noAdp o o).
The above description dff, can be simplified:

POA)EN) = —24_ o K~ HE+n00) + 2(Ads 0 K71 0 Ad, + 1 0 Adyo),

— 0o oAdyp) 0 K_l(é' oAd; + noAdy 0 0))

- %A, oK Ye+noo)+ %(K_l(s + noAdyo o Ad,-1),

—ooK Yo Ad, o)1 + 10 Adp 0 0 0 Ady()-1))

=—3(K Y& +no0), —o0 K~} &+ n00))
1
+ E(K_l(éj +noooAdypy1), —0 0 Ko Ad,,p)-1 +100))

= 3(K"Yn o0 o (Ad,(ye-1 — 1)) =0 0 K7HE 0 (Ad (-1 — 1))
3(K(n oo o (Adypye-1 — 1), —K Y& 0 00 (Ady(p-1 — 1)). O

It follows from [1] that P, is projectable or§” = D/G¢.. Actually, the following is also
true

Proposition 3.3. The bivector P}, is projectable to a bivector P§ on S = D/G ;.. Identify
S with G through the map

D— G

(a,b) —> ab L.

Trivialise the tangent space to G, and hence to S, by right translations. If s is in S, then
using the above identification P at the point s is

P§(s)(8) = 5(Ad,()-1 — Ady) 0 0 0 K~ 1(8). ®)
Following a suggestion of the referee, one can define the semi-direct product
G = Zo % G,

where the non-trivial element @, acts onG aso. If one identifies the component of the
identity of G to G4 and the other component & then the action by conjugation of
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to itself restricts to the twisted actiqt). This construction might explain the surprising

observation that the bi-vectd?, descends t§. Of course, one still needs to do some work
here since, for example, one needs the grddesdG to be connected in order to apply

the results of1].

Proof. Assumes in S is the image ofd, b) in D, that iss = ab—1. The tangent map of

D— G
(a,b) —> ab?1

at (@, b) is

p.o—g
(x, ¥) — x — Ad-1y.

The dual map op is

§r— (5§ —§oAd,1)

The bivectorPy, is projectable ontd if and only if for all (¢,5) in D and& in g*, the
expression

p(Pp(a. b)(p*€))
depends only om = ab~L. It will then be equal taPg (s)(£). This expression is equal to
p(Pg(Cl, b)(s» —§o Adabfl)) = %p((AdaU(h)’l - 1) 0oo Kﬁl(_%- © Adah’l)v
(1= Adyy(p)-1) 0 0 0 KH(E))
= %p((Ada(bafl) - Adao(a)*l) oogo K_l(s)v
(1= Adyy()-1) 0 0 0 KH(E))
= %(Adﬂ(ba_l) - Adao(a)_l - Adab_l
+ Adaa(a)—l) e oe] Kﬁl(f)
= %(Ado(bafl) —Ady-1)o0 0 K_l(s)'

This both proves thaiP, is projectable onS and gives a formula for the projected
bivector. O

To prove that there exists a quasi-Poisson actiagiq®odn (S, P¢), | must computeP?, P¢],
where [,] is the Schouten-Nijenhuis bracket on multi-vector fields.
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Lemma 3.4. For x, yand z in g, let ¢ = K(x), n = K(y) and v = K(z). We have

3LPG(s), PEOIE n. v) = FK(x, [y, 76(@)] + [5:(), 2] — w(ly, 1)),

where 1y = Adg 0 0 — 0 0 Ad-1.

Proof. Let (a,b) in D be such that = ab~1. Letp be as in the proof oProposition 3.3
The bivectorP¢(s) is p(Pp(a, b)). Hence,

[PS(s), PS(s)] = p([Pp(a, b), Pp(a, D)]).
But it is proved in[1] that

[P}(a, b), Ph(a, b)] = (¢°) (a, b) — (¢°)*(a, b).
Hence

3LPS(s), PE(s)] = p((¢”)(a, b)) — p((¢°)*(a, ).

Now, it is tedious but straightforward and very similar to the above computations to check
that

p((”) (@, )& 1, v) = 3K, [y, w(@] + [50), 2 = w(ly, 2D),

and

p(@°) (@, b)) 0, v) = 0. O

The groupD acts onS = D/ G ;. by multiplication on the left. This action restricts to an
action of G%. on S. Identifying G andG¢, via A7, this action is

GxS— S
(3. 8) —> gso(g) ™t

The infinitesimal action of at the points in S reads

g— TS~y

x> x — Ad; o o(x),
with dual map

E—>&—Eo0Adsooa
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Denote by ¢?)s the induced trivector field of.. If &, n andv are ing* then
(@)s($)E n,v) =¢°(E—E0Adyoo,n—noAds; o0, v—voAd;oo).
Computing the right hand side in the above equality is a simple calculation which proves

the following Lemma.

Lemma 3.5. The bivector field P¢ and the trivector field (¢°)s satisfy
3[Pg, Pg] = (¢°)s.
To prove that the action o on (S, PS) is indeed quasi-Poisson, there only remains to
prove thatPg is G -invariant.
Lemma 3.6. The bivector field P is G -invariant.

Proof. FixGin G >~ G¢. DenoteX the action oiG onS. The tangent map of; ats € S
is

T,S ~ g — Tgsa(g)—ls ~g

x —> Ad,x.

Also, if £ising*
P (850(8) 1)) = 3(Alyy()-10(0)-1 — Adgye(e)-1) 0 0 0 K1)
= 3Adg o (Ady -1 — Ady) 0 Ad, -1 00 0 K1)
= Adg(P§(s)(§ 0 Adg)) = (Ze)«(PE)(Zg(s))(E). D

Lemma 3.7. Let s be in S. The image of P§(s) is
ImPS(s) = {(1 — Ads 0 0) o (14 Ads 0 0)(y)|y € g}.

In particular, it is included in the tangent space to the orbit through s of the action of G°.

Proof. The image ofP{ (s) is by Proposition 3.3
IMPS (s) = {(Ad,(y)-1 — Ads)a(x)Ix € g}

The Lemma follows by setting = Ad; o o(y) = 0 o Ads(;)(¥) and noticing that (3
(Ad;00)?) =(1—Ad;00)o(1+Adso00). O

This finishes the proof ofheorem 2.1
ChooseG ando as inTheorem 2.2The trivector field P, PJ] is tangent to the orbit
of the action ofG% on S. These orbits are of dimension at most 2, therefore the trivector
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field [Pg, PS] vanishes and’g defines a Poisson structure on SUEJ which is invariant
under the action

SL(2 R) x SL(2, R) —> SL(2, R)
(g.5) —> gso(g)™L.

Lemma 3.7and a simple computation prove that along the orbit of the identity, the bivector
field P§ vanishes; and that elsewhere, its image coincides with the tangent space to the
orbits of the above action. Recall that[#], the domairl is given by

sinh(§) 4 cosh)cos() exp@)cosh()sin(z)

—exp(—0)cosh§)sin(z) —sinh(5) + cosh§)cose) | @

(7.0, p) =

This formula also defines coordinates briJsing Formula(3) of Proposition 3.3and a
computer, it is easy to check thAf if indeed given by Formulg2). This ends the proof of
Theorem 2.2

4. Final remarks

One might ask how different is the quasi-Poisson actioiz6fon (S, P¢) from the
usual quasi-Poisson action 6f, on (S, Ps). For example, if one takeS = SU(2), H =

1 0 i 0
[0 11 ando = Adg then the multiplication on the right in SU(2) t{yé ] defines
an isomorphism between the two quasi-Poisson actions.
Nevertheless, in the example™ieorem 2.2the two structures are indeed different since
for example the action of SL(R) on itself by conjugation has two fixed points whereas
the action of SL(2R) on itself used infheorem 2.2loes not have any fixed point.
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