Quasi-Poisson actions and massive non-rotating BTZ black holes

Sébastien Racanière*
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWB, UK

Received 20 November 2004; received in revised form 5 April 2005; accepted 5 April 2005
Available online 24 May 2005

Abstract

Using ideas from an article of Bieliavsky, Rooman and Spindel on BTZ black holes, I construct a family of interesting examples of quasi-Poisson actions as defined by Alekseev and KosmannSchwarzbach. As an application, I obtain a genuine Poisson structure on $\operatorname{SL}(2, \mathbb{R})$ which induces a Poisson structure on a BTZ black hole.

© 2005 Elsevier B.V. All rights reserved.
PACS: 97.60.Lf; 02.20.-a
MSC: 53D17; 53Z05
$J G P$ SC: Poisson manifolds

Keywords: Quasi-Poisson actions; BTZ black holes

1. Introduction

In [4], Bieliavsky et al. construct a Poisson structure on massive non-rotating BTZ black holes; in [3], Bieliavsky et al. construct a star product on the same black hole. The direction

[^0]of this deformation is a Poisson bivector field which has the same symplectic leaves as the Poisson bivector field of [4]: roughly speaking, they correspond to orbits under a certain twisted action by conjugation.

In the present paper, I wish to show how techniques used in [4] in conjunction with techniques of the theory of quasi-Poisson manifolds (see [1,2]) can be used to construct an interesting family of manifolds with a quasi-Poisson action and how a particular case of this family leads to a genuine Poisson structure on a massive non-rotating BTZ black hole with similar symplectic leaves as in $[4,3]$.

2. Main results

I will not recall here the basic definitions in the theory of quasi-Poisson manifolds and quasi-Poisson actions. The reader will find these definitions in Alekseev and KosmannSchwarzbach [1], and in Alekseev et al. [2].

Let G be a connected Lie group of dimension n and \mathfrak{g} its Lie algebra, on which G acts by the adjoint action Ad. Assume we are given an Ad-invariant non-degenerate bilinear form K on \mathfrak{g}. For example, if G is semi-simple, then K could be the Killing form. In the following, I will denote by K again the linear isomorphism

$$
\begin{aligned}
& \mathfrak{g} \longrightarrow \mathfrak{g}^{*} \\
& x \longmapsto K(x, \cdot) .
\end{aligned}
$$

Let $D=G \times G$ and $\mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g}$ its Lie algebra. Define an Ad-invariant non-degenerate bilinear form \langle,$\rangle of signature (n, n)$ by

$$
\begin{aligned}
& \mathfrak{d} \times \mathfrak{d}=(\mathfrak{g} \oplus \mathfrak{g}) \times(\mathfrak{g} \oplus \mathfrak{g}) \longrightarrow \mathbb{R} \\
& \left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \longmapsto K\left(x, x^{\prime}\right)-K\left(y, y^{\prime}\right) .
\end{aligned}
$$

Assume there is an involution σ on G which induces an orthogonal involutive morphism, again denoted by σ, on \mathfrak{g}. Let $\Delta_{+}: G \rightarrow D$ and $\Delta_{+}^{\sigma}: G \rightarrow D$ be given by

$$
\Delta_{+}(g)=(g, g)
$$

and

$$
\Delta_{+}^{\sigma}(g)=(g, \sigma(g))
$$

Denote by G_{+}and G_{+}^{σ} their respective images in D. Let $S=D / G_{+}$and $S^{\sigma}=D / G_{+}^{\sigma}$. Then both S and S^{σ} are isomorphic to G. The isomorphism between S and G is induced by the map

$$
\begin{aligned}
& D \longrightarrow G \\
& (g, h) \longmapsto g h^{-1}
\end{aligned}
$$

whereas the isomorphism between S^{σ} and G is induced by

$$
\begin{aligned}
& D \longrightarrow G \\
& (g, h) \longmapsto g \sigma(h)^{-1} .
\end{aligned}
$$

I will use these two isomorphisms to identify S and G, and S^{σ} and G. Denote again by $\Delta_{+}: \mathfrak{g} \rightarrow \mathfrak{d}$ and $\Delta_{+}^{\sigma}: \mathfrak{g} \rightarrow \mathfrak{d}$ the morphisms induced by $\Delta_{+}: G \rightarrow D$ and $\Delta_{+}^{\sigma}: G \rightarrow D$ respectively. Let $\Delta_{-}: \mathfrak{g} \rightarrow \mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g}$ and $\Delta_{-}^{\sigma}: \mathfrak{g} \rightarrow \mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g}$ be defined by

$$
\Delta_{-}(x)=(x,-x),
$$

and

$$
\Delta_{-}^{\sigma}(x)=(x,-\sigma(x)) .
$$

Let $\mathfrak{g}_{-}=\operatorname{Im}\left(\Delta_{-}\right)$and $\mathfrak{g}_{-}^{\sigma}=\operatorname{Im}\left(\Delta_{-}^{\sigma}\right)$. We have two quasi-triples $\left(D, G_{+}, \mathfrak{g}_{-}\right)$and ($D, G_{+}^{\sigma}, \mathfrak{g}_{-}^{\sigma}$). They induce two structures of quasi-Poisson Lie group on D, of respective bivector fields P_{D} and P_{D}^{σ}, and two structures of quasi-Poisson Lie group on G_{+}and G_{+}^{σ} of respective bivector fields $P_{G_{+}}$and $P_{G_{+}^{\sigma}}$. I will simply write G_{+}, respectively G_{+}^{σ}, to denote the group together with its quasi-Poisson structure. Of course, these quasi-Poisson structures are pairwise isomorphic. More precisely, the isomorphism Id $\times \sigma:(g, h) \longmapsto(g, \sigma(h))$ of D sends P_{D} on P_{D}^{σ} and vice-versa. This isomorphism can be used to deduce some of the results given at the beginning of the present article from the results of Alekseev and Kosmann-Schwarzbach [1]; but it takes just as long to redo the computations, and that is what I do here.

According to [1], the bivector field P_{D}, respectively P_{D}^{σ}, is projectable onto S, respectively S^{σ}. Let P_{S} and $P_{S^{\sigma}}^{\sigma}$ be their respective projections. Using the identifications between S and G, and S^{σ} and G, one can check that P_{S} and $P_{S^{\sigma}}^{\sigma}$ are the same bivector fields on G. What is more interesting, and what I will prove, is the following Theorem.

Theorem 2.1. The bivector field P_{D}^{σ} is projectable onto S. Let P_{S}^{σ} be its projection. Identify S with G and trivialise their tangent space using right translations, then for sin S and ξ in $\mathfrak{g}^{*} \simeq T_{s}^{*} S$ there is the following explicit formula

$$
P_{S}^{\sigma}(s)(\xi)=\frac{1}{2}\left(\operatorname{Ad}_{\sigma(s)^{-1}}-\operatorname{Ad}_{s}\right) \circ \sigma \circ K^{-1}(\xi) .
$$

Moreover, the action

$$
\begin{align*}
& G_{+}^{\sigma} \times S \longrightarrow S \tag{1}\\
& (g, s) \longmapsto g s \sigma(g)^{-1}
\end{align*}
$$

of G_{+}^{σ} on $\left(S, P_{S}^{\sigma}\right)$ is quasi-Poisson in the sense of Alekseev and Kosmann-Schwarzbach [1]. The image of $P_{S}^{\sigma}(s)$, seen as a map $T_{s}^{*} S \longrightarrow T_{s} S$, is tangent to the orbit through s of the action of G^{σ} on S.

In the setting of the above Theorem, the bivector field P_{S}^{σ} is G^{σ} invariant; hence if F is a subgroup of G^{σ} and \mathbf{I} is an F-invariant open subset of S such that the action of F on \mathbf{I} is principal then $F \backslash \mathbf{I}$ is a smooth manifold and P_{S}^{σ} descends to a bivector field on it. An application of this remark is the following Theorem.

Theorem 2.2. Let $G=\operatorname{SL}(2, \mathbb{R})$. Let

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

and choose $\sigma=\operatorname{Ad}_{H}$. Let

$$
\mathbf{I}=\left\{\left.\left[\begin{array}{cc}
u+x & y+t \\
y-t & u-x
\end{array}\right] \right\rvert\, \mathbf{u}^{2}-\mathbf{x}^{2}-\mathbf{y}^{2}+\mathbf{t}^{2}=\mathbf{1}, \mathbf{t}^{2}-\mathbf{y}^{2}>\mathbf{0}\right\}
$$

be an open subset of S. Let F be the following subgroup of G

$$
F=\{\exp (n \pi H), n \in \mathbb{N}\}
$$

The quotient $F \backslash \mathbf{I}$ (together with an appropriate metric) is a model of massive non-rotating BTZ black hole (see [4]). The bivector field it inherits following the above remark, is Poisson. Its symplectic leaves consist of the projection to $F \backslash \mathbf{I}$ of the orbits of the action of G^{σ} on S except along the projection of the orbit of the identity. Along this orbit, the bivector field vanishes and each point forms a symplectic leaf.

In the coordinates (46) of [4] (or (4)of the present article), the Poisson bivector field is

$$
\begin{equation*}
2 \cosh ^{2}\left(\frac{\rho}{2}\right) \sin (\tau) \sinh (\rho) \partial_{\tau} \wedge \partial_{\theta} \tag{2}
\end{equation*}
$$

The above Poisson bivector field should be compared with the one defined in [4] and given by

$$
\frac{1}{\cosh ^{2}(\rho / 2) \sin (\tau)} \partial_{\tau} \wedge \partial_{\theta}
$$

The symplectic leaves of this Poisson structure are the images under the projection $\mathbf{I} \longrightarrow$ $\mathbf{F} \backslash \mathbf{I}$ of the action of G_{+}^{σ} on S. Considering the similarity between the above two Poisson structures, it would be interesting to find an interpretation of this similarity from the black hole point of view.

3. Let the computations begin

Throughout the present article, I will use the notations introduced in the previous Section. To begin with, I will prove that ($D, G_{+}^{\sigma}, \mathfrak{g}_{-}^{\sigma}$) does indeed form a quasi-triple.

Because $\mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g}$, one also has a decomposition $\mathfrak{d}^{*}=\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$. One also has $\mathfrak{d}=\mathfrak{g}_{+}^{\sigma} \oplus$ $\mathfrak{g}_{-}^{\sigma}$ and accordingly $\mathfrak{d}^{*}=\mathfrak{g}_{+}^{\sigma *} \oplus \mathfrak{g}_{-}^{\sigma *}$. Denote $p_{\mathfrak{g}_{+}^{\sigma}}$ and $p_{\mathfrak{g}_{-}^{\sigma}}$ the projections on respectively $\mathfrak{g}_{+}^{\sigma}$ and $\mathfrak{g}_{-}^{\sigma}$ induced by the decomposition $\mathfrak{d}=\mathfrak{g}_{+}^{\sigma^{+}} \oplus \mathfrak{g}_{-}^{\sigma}$. So that $1_{\mathfrak{d}}=p_{\mathfrak{g}_{+}^{\sigma}}+p_{\mathfrak{g}_{-}^{\sigma}}$.

In this article, I express results using mostly the decomposition $\mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g}$. Using it, we have

$$
\mathfrak{g}_{+}^{\sigma *}=\left\{(\xi, \xi \circ \sigma) \mid \xi \in \mathfrak{g}^{*}\right\}
$$

and

$$
\mathfrak{g}_{-}^{\sigma *}=\left\{(\xi,-\xi \circ \sigma) \mid \xi \in \mathfrak{g}^{*}\right\} .
$$

Proposition 3.1. The triple $\left(D, G_{+}^{\sigma}, \mathfrak{g}_{-}^{\sigma}\right)$ forms a quasi-triple in the sense of [1]. The characteristic elements of this quasi-triple as defined in [1] and hereby denoted by j, $\mathbf{F}^{\sigma}, \varphi^{\sigma}$ and the r-matrix $r_{\mathfrak{d}}^{\sigma}$ are

$$
\begin{aligned}
& j: \mathfrak{g}_{+}^{\sigma *} \longrightarrow \mathfrak{g}_{-}^{\sigma} \\
& (\xi, \xi \circ \sigma) \longmapsto \Delta_{-}^{\sigma} \circ K^{-1}(\xi),
\end{aligned}
$$

and

$$
F^{\sigma}=0
$$

and

$$
\begin{aligned}
& \varphi^{\sigma}: \Lambda^{3} \mathfrak{g}_{+}^{\sigma *} \longrightarrow \mathbb{R} \\
& ((\xi, \sigma \circ \xi),(\eta, \sigma \circ \eta),(\nu, \sigma \circ \eta)) \longmapsto 2 K\left(K^{-1}(\nu),\left[K^{-1}(\xi), K^{-1}(\eta)\right]\right)
\end{aligned}
$$

and finally the r-matrix

$$
\begin{aligned}
& r_{\mathfrak{d}}^{\sigma}: \mathfrak{g}^{*} \oplus \mathfrak{g}^{*} \longrightarrow \mathfrak{g} \oplus \mathfrak{g} \\
& (\xi, \eta) \longmapsto \frac{1}{2} \Delta_{-}^{\sigma} \circ K^{-1}(\xi+\eta \circ \sigma)
\end{aligned}
$$

Notice here that it is crucial for σ to be of order no higher than 2 , otherwise one would fail to obtain a quasi-triple as in the above Proposition.

Proof. It is straightforward to prove that $\mathfrak{d}=\mathfrak{g}_{+}^{\sigma} \oplus \mathfrak{g}_{-}^{\sigma}$ and that both $\mathfrak{g}_{+}^{\sigma}$ and $\mathfrak{g}_{-}^{\sigma}$ are isotropic in $(\mathfrak{d},\langle \rangle)$. This proves that $\left(D, G^{\sigma}, \mathfrak{g}_{-}^{\sigma}\right)$ is a quasi-triple.

For $(\xi, \xi \circ \sigma)$ in $\mathfrak{g}_{+}^{\sigma *}$ and $(x, \sigma(x))$ in $\mathfrak{g}_{+}^{\sigma}$

$$
\langle j(\xi, \xi \circ \sigma),(x, \sigma(x))\rangle=(\xi, \xi \circ \sigma)(x, \sigma(x)) .
$$

The map j is actually characterised by this last property. The equality

$$
\left\langle\Delta_{-}^{\sigma} \circ K^{-1} \circ \Delta_{+}^{\sigma *}(\xi, \xi \circ \sigma),(x, \sigma(x))\right\rangle=(\xi, \xi \circ \sigma)(x, \sigma(x)),
$$

proves that

$$
j(\xi, \xi \circ \sigma)=\Delta_{-}^{\sigma} \circ K^{-1} \circ \Delta_{+}^{\sigma *}(\xi, \xi \circ \sigma)=\Delta_{-}^{\sigma} \circ K^{-1}(\xi) .
$$

Since σ is a Lie algebra morphism, we have $\left[\mathfrak{g}_{-}^{\sigma}, \mathfrak{g}_{-}^{\sigma}\right] \subset \mathfrak{g}_{+}^{\sigma}$. This proves that F^{σ} : $\bigwedge^{2} \mathfrak{g}_{+}^{\sigma *} \longrightarrow \mathfrak{g}_{-}^{\sigma}$, given by

$$
F^{\sigma}(\xi, \eta)=p_{\mathfrak{g}_{-}^{\sigma}}[j(\xi), j(\eta)]
$$

vanishes.
I will now compute φ^{σ}. It is defined as

$$
\begin{aligned}
\varphi^{\sigma}((\xi, \sigma \circ \xi),(\eta, \sigma \circ \eta),(\nu, \sigma \circ v)) & =(v, \sigma \circ \nu) \circ p_{\mathfrak{g}_{+}^{\sigma}}([j(\xi, \sigma \circ \xi), j(\eta, \sigma \circ \eta)]) \\
& =\langle j(v, \sigma \circ v),[j(\xi, \sigma \circ \xi), j(\eta, \eta \circ \eta)]\rangle \\
& =\left\langle\Delta_{-}^{\sigma} \circ K^{-1}(\nu),\left[\Delta_{-}^{\sigma} \circ K^{-1}(\xi), \Delta_{-}^{\sigma} \circ K^{-1}(\eta)\right]\right\rangle \\
& =2 K\left(K^{-1}(\nu),\left[K^{-1}(\xi), K^{-1}(\eta)\right]\right) .
\end{aligned}
$$

Finally, the r-matrix is defined as

$$
\begin{aligned}
& r_{\mathfrak{d}}^{\sigma}: \mathfrak{g}_{+}^{\sigma *} \oplus \mathfrak{g}_{-}^{\sigma *} \longrightarrow \mathfrak{g}_{+}^{\sigma} \oplus \mathfrak{g}_{-}^{\sigma} \\
& ((\xi, \xi \circ \sigma),(\eta, \eta \circ \sigma)) \longmapsto(0, j(\xi, \xi \circ \sigma)) .
\end{aligned}
$$

If (ξ, η) is in $\mathfrak{d}^{*}=\mathfrak{g}^{*} \oplus \mathfrak{g}^{*}$ then its decomposition in $\mathfrak{g}_{+}^{\sigma *} \oplus \mathfrak{g}_{-}^{\sigma *}$ is $(1 / 2)((\xi+\eta \circ \sigma, \xi \circ \sigma+$ $\eta),(\xi-\eta \circ \sigma,-\xi \circ \sigma+\eta)$). The result follows.

I now wish to compute the bivector P_{D}^{σ} on D. By definition, it is equal to $\left(r_{\mathfrak{d}}^{\sigma}\right)^{\lambda}-\left(r_{\mathfrak{d}}^{\sigma}\right)^{\rho}$, where the upper script λ means the left invariant section of $\Gamma(T D \otimes T D)$ generated by $r_{\mathfrak{d}}^{\sigma}$, while the upper script ρ means the right invariant section of $\Gamma(T D \otimes T D)$ generated by $r_{\mathfrak{\jmath}}^{\sigma}$.

Proposition 3.2. Identify $T_{d} D$ to \mathfrak{d} by right translations. The value of P_{D}^{σ} at $d=(a, b)$ is

$$
\begin{aligned}
& \mathfrak{d}^{*}=\mathfrak{g}^{*} \oplus \mathfrak{g}^{*} \longrightarrow \mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g} \\
& (\xi, \eta) \longmapsto \frac{1}{2}\left(K^{-1}\left(\eta \circ \sigma \circ\left(\operatorname{Ad}_{\sigma(b) a^{-1}}-1\right)\right),-K^{-1}\left(\xi \circ \sigma \circ\left(\operatorname{Ad}_{\sigma(a) b^{-1}}\right)\right)\right)
\end{aligned}
$$

Proof. Fix $d=(a, b)$ in D. I choose to trivialise the tangent bundle, and its dual, of D by using right translations. See $\left(r_{\mathfrak{d}}^{\sigma}\right)^{\rho}$ as a map from $T^{*} D$ to $T D$. If α is in \mathfrak{d}^{*}, then

$$
\left(r_{\mathfrak{d}}^{\sigma}\right)^{\rho}(d)\left(\alpha^{\rho}\right)=\left(r_{\mathfrak{d}}^{\sigma}(\alpha)\right)^{\rho}(d)
$$

whereas

$$
\left(r_{\mathfrak{d}}^{\sigma}\right)^{\lambda}(d)\left(\alpha^{\rho}\right)=\left(\operatorname{Ad}_{d} \circ r_{\mathfrak{d}}^{\sigma}\left(\alpha \circ \operatorname{Ad}_{d}\right)\right)^{\rho}(d) .
$$

Thus P_{D}^{σ} at the point $d=(a, b)$ is

$$
\begin{aligned}
& \mathfrak{d}^{*}=\mathfrak{g}^{*} \oplus \mathfrak{g}^{*} \longrightarrow \mathfrak{d}=\mathfrak{g} \oplus \mathfrak{g} \\
& (\xi, \eta) \longmapsto-\frac{1}{2} \Delta_{-} \circ K^{-1}(\xi+\eta \circ \sigma)+\frac{1}{2} \operatorname{Ad}_{d} \circ \Delta_{-} \circ K^{-1}\left(\xi \circ \operatorname{Ad}_{a}+\eta \circ \operatorname{Ad}_{b} \circ \sigma\right) .
\end{aligned}
$$

The above description of P_{D}^{σ} can be simplified:

$$
\begin{aligned}
P_{D}^{\sigma}(d)(\xi, \eta)= & -\frac{1}{2} \Delta_{-} \circ K^{-1}(\xi+\eta \circ \sigma)+\frac{1}{2}\left(\operatorname{Ad}_{a} \circ K^{-1}\left(\xi \circ \operatorname{Ad}_{a}+\eta \circ \operatorname{Ad}_{b} \sigma\right),\right. \\
& \left.-\sigma \circ \operatorname{Ad}_{\sigma(b)} \circ K^{-1}\left(\xi \circ \operatorname{Ad}_{a}+\eta \circ \operatorname{Ad}_{b} \circ \sigma\right)\right) \\
= & -\frac{1}{2} \Delta_{-} \circ K^{-1}(\xi+\eta \circ \sigma)+\frac{1}{2}\left(K^{-1}\left(\xi+\eta \circ \operatorname{Ad}_{b} \sigma \circ \operatorname{Ad}_{a^{-1}}\right)\right. \\
& \left.-\sigma \circ K^{-1}\left(\xi \circ \operatorname{Ad}_{a \sigma(b)^{-1}}+\eta \circ \operatorname{Ad}_{b} \circ \sigma \circ \operatorname{Ad}_{\left.\sigma(b)^{-1}\right)}\right)\right) \\
= & -\frac{1}{2}\left(K^{-1}(\xi+\eta \circ \sigma),-\sigma \circ K^{-1}(\xi+\eta \circ \sigma)\right) \\
& +\frac{1}{2}\left(K^{-1}\left(\xi+\eta \circ \sigma \circ \operatorname{Ad}_{\sigma(b) a^{-1}}\right),-\sigma \circ K^{-1}\left(\xi \circ \operatorname{Ad}_{a \sigma(b)^{-1}}+\eta \circ \sigma\right)\right) \\
= & \frac{1}{2}\left(K^{-1}\left(\eta \circ \sigma \circ\left(\operatorname{Ad}_{\sigma(b) a^{-1}}-1\right)\right),-\sigma \circ K^{-1}\left(\xi \circ\left(\operatorname{Ad}_{a \sigma(b)^{-1}}-1\right)\right)\right) \\
= & \frac{1}{2}\left(K^{-1}\left(\eta \circ \sigma \circ\left(\operatorname{Ad}_{\sigma(b) a^{-1}}-1\right)\right),-K^{-1}\left(\xi \circ \sigma \circ\left(\operatorname{Ad}_{\sigma(a) b^{-1}}-1\right)\right)\right)
\end{aligned}
$$

It follows from [1] that P_{D}^{σ} is projectable on $S^{\sigma}=D / G_{+}^{\sigma}$. Actually, the following is also true

Proposition 3.3. The bivector P_{D}^{σ} is projectable to a bivector P_{S}^{σ} on $S=D / G_{+}$. Identify S with G through the map

$$
\begin{aligned}
& D \longrightarrow G \\
& (a, b) \longmapsto a b^{-1}
\end{aligned}
$$

Trivialise the tangent space to G, and hence to S, by right translations. If s is in S, then using the above identification P_{S}^{σ} at the point s is

$$
\begin{equation*}
P_{S}^{\sigma}(s)(\xi)=\frac{1}{2}\left(\operatorname{Ad}_{\sigma(s)^{-1}}-\operatorname{Ad}_{s}\right) \circ \sigma \circ K^{-1}(\xi) \tag{3}
\end{equation*}
$$

Following a suggestion of the referee, one can define the semi-direct product

$$
\tilde{G}=\mathbb{Z}_{2} \ltimes G,
$$

where the non-trivial element of \mathbb{Z}_{2} acts on G as σ. If one identifies the component of the identity of \tilde{G} to G_{+}^{σ} and the other component to S, then the action by conjugation of \tilde{G}
to itself restricts to the twisted action (1). This construction might explain the surprising observation that the bi-vector P_{D}^{σ} descends to S. Of course, one still needs to do some work here since, for example, one needs the groups D and G to be connected in order to apply the results of [1].

Proof. Assume s in S is the image of (a, b) in D, that is $s=a b^{-1}$. The tangent map of

$$
\begin{aligned}
& D \longrightarrow G \\
& (a, b) \longmapsto a b^{-1}
\end{aligned}
$$

at (a, b) is

$$
\begin{aligned}
& p: \mathfrak{d} \longrightarrow \mathfrak{g} \\
& (x, y) \longmapsto x-\operatorname{Ad}_{a b^{-1}} y .
\end{aligned}
$$

The dual map of p is

$$
\begin{aligned}
& p^{*}: \mathfrak{g}^{*} \longrightarrow \mathfrak{d}^{*} \\
& \xi \longmapsto\left(\xi,-\xi \circ \operatorname{Ad}_{a b^{-1}}\right)
\end{aligned}
$$

The bivector P_{D}^{σ} is projectable onto S if and only if for all (a, b) in D and ξ in \mathfrak{g}^{*}, the expression

$$
p\left(P_{D}^{\sigma}(a, b)\left(p^{*} \xi\right)\right)
$$

depends only on $s=a b^{-1}$. It will then be equal to $P_{S}^{\sigma}(s)(\xi)$. This expression is equal to

$$
\begin{aligned}
p\left(P_{D}^{\sigma}(a, b)\left(\xi,-\xi \circ \operatorname{Ad}_{a b^{-1}}\right)\right)= & \frac{1}{2} p\left(\left(\operatorname{Ad}_{a \sigma(b)^{-1}}-1\right) \circ \sigma \circ K^{-1}\left(-\xi \circ \operatorname{Ad}_{a b^{-1}}\right),\right. \\
& \left.\left(1-\operatorname{Ad}_{b \sigma(a)^{-1}}\right) \circ \sigma \circ K^{-1}(\xi)\right) \\
= & \frac{1}{2} p\left(\left(\operatorname{Ad}_{\sigma\left(b a^{-1}\right)}-\operatorname{Ad}_{a \sigma(a)^{-1}}\right) \circ \sigma \circ K^{-1}(\xi)\right. \\
& \left.\left(1-\operatorname{Ad}_{b \sigma(a)^{-1}}\right) \circ \sigma \circ K^{-1}(\xi)\right) \\
= & \frac{1}{2}\left(\operatorname{Ad}_{\sigma\left(b a^{-1}\right)}-\operatorname{Ad}_{a \sigma(a)^{-1}}-\operatorname{Ad}_{a b^{-1}}\right. \\
& \left.+\operatorname{Ad}_{a \sigma(a)^{-1}}\right) \circ \sigma \circ K^{-1}(\xi) \\
= & \frac{1}{2}\left(\operatorname{Ad}_{\sigma\left(b a^{-1}\right)}-\operatorname{Ad}_{a b^{-1}}\right) \circ \sigma \circ K^{-1}(\xi) .
\end{aligned}
$$

This both proves that P_{D}^{σ} is projectable on S and gives a formula for the projected bivector.

To prove that there exists a quasi-Poisson action of G^{σ} on $\left(S, P_{S}^{\sigma}\right)$, I must compute $\left[P_{S}^{\sigma}, P_{S}^{\sigma}\right]$, where [,] is the Schouten-Nijenhuis bracket on multi-vector fields.

Lemma 3.4. For x, y and z in \mathfrak{g}, let $\xi=K(x), \eta=K(y)$ and $v=K(z)$. We have

$$
\frac{1}{2}\left[P_{S}^{\sigma}(s), P_{S}^{\sigma}(s)\right](\xi, \eta, \nu)=\frac{1}{4} K\left(x,\left[y, \tau_{s}(z)\right]+\left[\tau_{s}(y), z\right]-\tau_{s}([y, z])\right),
$$

where $\tau_{s}=\operatorname{Ad}_{s} \circ \sigma-\sigma \circ \operatorname{Ad}_{s^{-1}}$.
Proof. Let (a, b) in D be such that $s=a b^{-1}$. Let p be as in the proof of Proposition 3.3. The bivector $P_{S}^{\sigma}(s)$ is $p\left(P_{D}^{\sigma}(a, b)\right)$. Hence,

$$
\left[P_{S}^{\sigma}(s), P_{S}^{\sigma}(s)\right]=p\left(\left[P_{D}^{\sigma}(a, b), P_{D}^{\sigma}(a, b)\right]\right)
$$

But it is proved in [1] that

$$
\left[P_{D}^{\sigma}(a, b), P_{D}^{\sigma}(a, b)\right]=\left(\varphi^{\sigma}\right)^{\rho}(a, b)-\left(\varphi^{\sigma}\right)^{\lambda}(a, b) .
$$

Hence

$$
\frac{1}{2}\left[P_{S}^{\sigma}(s), P_{S}^{\sigma}(s)\right]=p\left(\left(\varphi^{\sigma}\right)^{\rho}(a, b)\right)-p\left(\left(\varphi^{\sigma}\right)^{\lambda}(a, b)\right)
$$

Now, it is tedious but straightforward and very similar to the above computations to check that

$$
p\left(\left(\varphi^{\sigma}\right)^{\rho}(a, b)\right)(\xi, \eta, v)=\frac{1}{4} K\left(x,\left[y, \tau_{s}(z)\right]+\left[\tau_{s}(y), z\right]-\tau_{s}([y, z])\right),
$$

and

$$
p\left(\left(\varphi^{\sigma}\right)^{\lambda}(a, b)\right)(\xi, \eta, \nu)=0
$$

The group D acts on $S=D / G_{+}$by multiplication on the left. This action restricts to an action of G_{+}^{σ} on S. Identifying G and G_{+}^{σ} via Δ_{+}^{σ}, this action is

$$
\begin{aligned}
& G \times S \longrightarrow S \\
& (g, s) \longmapsto g s \sigma(g)^{-1} .
\end{aligned}
$$

The infinitesimal action of \mathfrak{g} at the point s in S reads

$$
\begin{aligned}
& \mathfrak{g} \longrightarrow T_{S} S \simeq \mathfrak{g} \\
& x \longmapsto x-\operatorname{Ad}_{s} \circ \sigma(x),
\end{aligned}
$$

with dual map

$$
\begin{aligned}
& T_{s}^{*} S \simeq \mathfrak{g}^{*} \longrightarrow \mathfrak{g}^{*} \\
& \xi \longmapsto \xi-\xi \circ \operatorname{Ad}_{s} \circ \sigma .
\end{aligned}
$$

Denote by $\left(\varphi^{\sigma}\right)_{S}$ the induced trivector field on S. If ξ, η and v are in \mathfrak{g}^{*} then

$$
\left(\varphi^{\sigma}\right)_{S}(s)(\xi, \eta, \nu)=\varphi^{\sigma}\left(\xi-\xi \circ \operatorname{Ad}_{s} \circ \sigma, \eta-\eta \circ \operatorname{Ad}_{s} \circ \sigma, v-v \circ \operatorname{Ad}_{s} \circ \sigma\right) .
$$

Computing the right hand side in the above equality is a simple calculation which proves the following Lemma.

Lemma 3.5. The bivector field P_{S}^{σ} and the trivector field $\left(\varphi^{\sigma}\right)_{S}$ satisfy

$$
\frac{1}{2}\left[P_{S}^{\sigma}, P_{S}^{\sigma}\right]=\left(\varphi^{\sigma}\right)_{S}
$$

To prove that the action of G_{+}^{σ} on $\left(S, P_{S}^{\sigma}\right)$ is indeed quasi-Poisson, there only remains to prove that P_{S}^{σ} is G_{+}^{σ}-invariant.
Lemma 3.6. The bivector field P_{S}^{σ} is G_{+}^{σ}-invariant.
Proof. Fix G in $G \simeq G_{+}^{\sigma}$. Denote Σ_{g} the action of G on S. The tangent map of Σ_{g} at $s \in S$ is

$$
\begin{aligned}
& T_{s} S \simeq \mathfrak{g} \longrightarrow T_{g s \sigma(g)^{-1}} S \simeq \mathfrak{g} \\
& x \longmapsto \operatorname{Ad}_{g} x .
\end{aligned}
$$

Also, if ξ is in \mathfrak{g}^{*}

$$
\begin{aligned}
P_{S}^{\sigma}\left(g s \sigma(g)^{-1}\right)(\xi) & =\frac{1}{2}\left(\operatorname{Ad}_{g \sigma(s)^{-1} \sigma(g)^{-1}}-\operatorname{Ad}_{g s \sigma(g)^{-1}}\right) \circ \sigma \circ K^{-1}(\xi) \\
& =\frac{1}{2} \operatorname{Ad}_{g} \circ\left(\operatorname{Ad}_{\sigma(s)^{-1}}-\operatorname{Ad}_{s}\right) \circ \operatorname{Ad}_{\sigma(g)^{-1}} \circ \sigma \circ K^{-1}(\xi) \\
& =\operatorname{Ad}_{g}\left(P_{S}^{\sigma}(s)\left(\xi \circ \operatorname{Ad}_{g}\right)\right)=\left(\Sigma_{g}\right)_{*}\left(P_{S}^{\sigma}\right)\left(\Sigma_{g}(s)\right)(\xi)
\end{aligned}
$$

Lemma 3.7. Let s be in S. The image of $P_{S}^{\sigma}(s)$ is

$$
\operatorname{Im} P_{S}^{\sigma}(s)=\left\{\left(1-\operatorname{Ad}_{s} \circ \sigma\right) \circ\left(1+\operatorname{Ad}_{s} \circ \sigma\right)(y) \mid y \in \mathfrak{g}\right\}
$$

In particular, it is included in the tangent space to the orbit through s of the action of G^{σ}.
Proof. The image of $P_{S}^{\sigma}(s)$ is by Proposition 3.3

$$
\operatorname{Im} P_{S}^{\sigma}(s)=\left\{\left(\operatorname{Ad}_{\sigma(s)^{-1}}-\operatorname{Ad}_{s}\right) \sigma(x) \mid x \in \mathfrak{g}\right\}
$$

The Lemma follows by setting $x=\operatorname{Ad}_{s} \circ \sigma(y)=\sigma \circ \operatorname{Ad}_{\sigma(s)}(y)$ and noticing that ($1-$ $\left.\left(\mathrm{Ad}_{s} \circ \sigma\right)^{2}\right)=\left(1-\mathrm{Ad}_{s} \circ \sigma\right) \circ\left(1+\mathrm{Ad}_{s} \circ \sigma\right)$.

This finishes the proof of Theorem 2.1.
Choose G and σ as in Theorem 2.2. The trivector field [$P_{S}^{\sigma}, P_{S}^{\sigma}$] is tangent to the orbit of the action of G_{+}^{σ} on S. These orbits are of dimension at most 2, therefore the trivector
field $\left[P_{S}^{\sigma}, P_{S}^{\sigma}\right]$ vanishes and P_{S}^{σ} defines a Poisson structure on $\operatorname{SL}(2, \mathbb{R})$ which is invariant under the action

$$
\begin{aligned}
& \mathrm{SL}(2, \mathbb{R}) \times \mathrm{SL}(2, \mathbb{R}) \longrightarrow \mathrm{SL}(2, \mathbb{R}) \\
& (g, s) \longmapsto g s \sigma(g)^{-1} .
\end{aligned}
$$

Lemma 3.7 and a simple computation prove that along the orbit of the identity, the bivector field P_{S}^{σ} vanishes; and that elsewhere, its image coincides with the tangent space to the orbits of the above action. Recall that in [4], the domain \mathbf{I} is given by

$$
z(\tau, \theta, \rho)=\left[\begin{array}{cc}
\sinh \left(\frac{\rho}{2}\right)+\cosh \left(\frac{\rho}{2}\right) \cos (\tau) & \exp (\theta) \cosh \left(\frac{\rho}{2}\right) \sin (\tau) \tag{4}\\
-\exp (-\theta) \cosh \left(\frac{\rho}{2}\right) \sin (\tau) & -\sinh \left(\frac{\rho}{2}\right)+\cosh \left(\frac{\rho}{2}\right) \cos (\tau)
\end{array}\right] .
$$

This formula also defines coordinates on I. Using Formula (3) of Proposition 3.3 and a computer, it is easy to check that P_{S}^{σ} if indeed given by Formula (2). This ends the proof of Theorem 2.2.

4. Final remarks

One might ask how different is the quasi-Poisson action of G_{+}^{σ} on $\left(S, P_{S}^{\sigma}\right)$ from the usual quasi-Poisson action of G_{+}on $\left(S, P_{S}\right)$. For example, if one takes $G=\mathrm{SU}(2), H=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $\sigma=\operatorname{Ad}_{H}$ then the multiplication on the right in $\operatorname{SU}(2)$ by $\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$ defines an isomorphism between the two quasi-Poisson actions.

Nevertheless, in the example of Theorem 2.2, the two structures are indeed different since for example the action of $\operatorname{SL}(2, \mathbb{R})$ on itself by conjugation has two fixed points whereas the action of $\operatorname{SL}(2, \mathbb{R})$ on itself used in Theorem 2.2 does not have any fixed point.

Acknowledgements

I would like to thank the referee for her/his careful reading and for her/his suggestions. Thank you to Pierre Bieliavsky for advising me to look at the article [4] and then answering my questions about it. Thank you to Stéphane Detournay for talking to me about physics in a way I could understand and for answering many questions I had about [3]. A big thanks to David Iglesias-Ponte for interesting conversations about [1].

The author was supported by a Marie Curie Fellowship at Imperial College London, EC Contract Ref: HPMF-CT-2002-01850.

References

[1] A. Alekseev, Y. Kosmann-Schwarzbach, Manin pairs and moment maps, J. Differ. Geom. 561 (2000) 133165.
[2] A. Alekseev, Y. Kosmann-Schwarzbach, E. Meinrenken, Quasi-Poisson manifolds, Canad. J. Math. 541 (2002) 3-29.
[3] P. Bieliavsky, S. Detournay, Ph. Spindel, M. Rooman, Star Product on extended massive non-rotating BTZ black holes, J. High Energy Phys. JHEP06 (2004) 031.
[4] P. Bieliavsky, M. Rooman, Ph. Spindel, Regular Poisson structures on massive non-rotating BTZ black holes, Nucl. Phys. B 645 1-2 (2002) 349-364.

[^0]: * Tel.: +44 1223 765881; fax: +44 1223337920.

 E-mail address: s.racaniere@dpmms.cam.ac.uk. URL: http://myweb.tiscali.co.uk/racaniere.

