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Abstract

Using ideas from an article of Bieliavsky, Rooman and Spindel on BTZ black holes, I construct
a family of interesting examples of quasi-Poisson actions as defined by Alekseev and Kosmann-
Schwarzbach. As an application, I obtain a genuine Poisson structure on SL(2,R) which induces a
Poisson structure on a BTZ black hole.
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1. Introduction

In [4], Bieliavsky et al. construct a Poisson structure on massive non-rotating BTZ black
holes; in[3], Bieliavsky et al. construct a star product on the same black hole. The direction

∗ Tel.: +44 1223 765881; fax: +44 1223 337920.
E-mail address: s.racaniere@dpmms.cam.ac.uk.

URL: http://myweb.tiscali.co.uk/racaniere.

0393-0440/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2005.04.001



560 S. Racanière / Journal of Geometry and Physics 56 (2006) 559–570

of this deformation is a Poisson bivector field which has the same symplectic leaves as the
Poisson bivector field of[4]: roughly speaking, they correspond to orbits under a certain
twisted action by conjugation.

In the present paper, I wish to show how techniques used in[4] in conjunction with
techniques of the theory of quasi-Poisson manifolds (see[1,2]) can be used to construct an
interesting family of manifolds with a quasi-Poisson action and how a particular case of
this family leads to a genuine Poisson structure on a massive non-rotating BTZ black hole
with similar symplectic leaves as in[4,3].

2. Main results

I will not recall here the basic definitions in the theory of quasi-Poisson manifolds and
quasi-Poisson actions. The reader will find these definitions in Alekseev and Kosmann-
Schwarzbach[1], and in Alekseev et al.[2].

Let G be a connected Lie group of dimensionn andg its Lie algebra, on whichG acts by
the adjoint action Ad. Assume we are given an Ad-invariant non-degenerate bilinear form
K ong. For example, ifG is semi-simple, thenK could be the Killing form. In the following,
I will denote byK again the linear isomorphism

g −→ g∗

x �−→ K(x, ·).

Let D = G × G and d = g⊕ g its Lie algebra. Define an Ad-invariant non-degenerate
bilinear form〈 , 〉 of signature (n, n) by

d× d = (g⊕ g) × (g⊕ g) −→ R

((x, y), (x′, y′)) �−→ K(x, x′) − K(y, y′).

Assume there is an involutionσ on G which induces an orthogonal involutive morphism,
again denoted byσ, ong. Let ∆+ : G → D and∆σ+ : G → D be given by

∆+(g) = (g, g)

and

∆σ
+(g) = (g, σ(g)).

Denote byG+ andGσ+ their respective images inD. Let S = D/G+ andSσ = D/Gσ+.
Then bothS andSσ are isomorphic toG. The isomorphism betweenS andG is induced by
the map

D −→ G

(g, h) �−→ gh−1,
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whereas the isomorphism betweenSσ andG is induced by

D −→ G

(g, h) �−→ gσ(h)−1.

I will use these two isomorphisms to identifyS andG, andSσ andG. Denote again by
∆+ : g→ d and∆σ+ : g→ d the morphisms induced by∆+ : G → D and∆σ+ : G → D

respectively. Let∆− : g→ d = g⊕ g and∆σ− : g→ d = g⊕ g be defined by

∆−(x) = (x, −x),

and

∆σ−(x) = (x, −σ(x)).

Let g− = Im(∆−) and gσ− = Im(∆σ−). We have two quasi-triples (D, G+, g−) and
(D, Gσ+, gσ−). They induce two structures of quasi-Poisson Lie group onD, of respective
bivector fieldsPD andPσ

D, and two structures of quasi-Poisson Lie group onG+ andGσ+ of
respective bivector fieldsPG+ andPGσ+ . I will simply write G+, respectivelyGσ+, to denote
the group together with its quasi-Poisson structure. Of course, these quasi-Poisson structures
are pairwise isomorphic. More precisely, the isomorphism Id× σ : (g, h) �−→ (g, σ(h)) of
D sendsPD on Pσ

D and vice-versa. This isomorphism can be used to deduce some of
the results given at the beginning of the present article from the results of Alekseev and
Kosmann-Schwarzbach[1]; but it takes just as long to redo the computations, and that is
what I do here.

According to[1], the bivector fieldPD, respectivelyPσ
D, is projectable ontoS, respectively

Sσ . LetPS andPσ
Sσ be their respective projections. Using the identifications betweenS and

G, andSσ andG, one can check thatPS andPσ
Sσ are the same bivector fields onG. What

is more interesting, and what I will prove, is the following Theorem.

Theorem 2.1. The bivector field Pσ
D is projectable onto S. Let Pσ

S be its projection. Identify
S with G and trivialise their tangent space using right translations, then for s in S and ξ in
g∗ � T ∗

s S there is the following explicit formula

Pσ
S (s)(ξ) = 1

2(Adσ(s)−1 − Ads) ◦ σ ◦ K−1(ξ).

Moreover, the action

Gσ+ × S −→ S

(g, s) �−→ gsσ(g)−1 (1)

of Gσ+ on (S, Pσ
S ) is quasi-Poisson in the sense of Alekseev and Kosmann-Schwarzbach [1].

The image of Pσ
S (s), seen as a map T ∗

s S −→ TsS, is tangent to the orbit through s of the
action of Gσ on S.
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In the setting of the above Theorem, the bivector fieldPσ
S is Gσ invariant; hence ifF is

a subgroup ofGσ andI is anF-invariant open subset ofS such that the action ofF on I
is principal thenF\I is a smooth manifold andPσ

S descends to a bivector field on it. An
application of this remark is the following Theorem.

Theorem 2.2. Let G = SL(2,R). Let

H =
[

1 0

0 −1

]

and choose σ = AdH . Let

I =
{[

u + x y + t

y − t u − x

]
|u2 − x2 − y2 + t2 = 1, t2 − y2 > 0

}

be an open subset of S. Let F be the following subgroup of G

F = {exp(nπH), n ∈ N}.

The quotient F\I (together with an appropriate metric) is a model of massive non-rotating
BTZ black hole (see [4]). The bivector field it inherits following the above remark, is Poisson.
Its symplectic leaves consist of the projection to F\I of the orbits of the action of Gσ on S
except along the projection of the orbit of the identity. Along this orbit, the bivector field
vanishes and each point forms a symplectic leaf.

In the coordinates (46) of [4] (or (4)of the present article), the Poisson bivector field is

2cosh2
(ρ

2

)
sin(τ)sinh(ρ)∂τ ∧ ∂θ. (2)

The above Poisson bivector field should be compared with the one defined in[4] and given
by

1

cosh2(ρ/2)sin(τ)
∂τ ∧ ∂θ.

The symplectic leaves of this Poisson structure are the images under the projectionI −→
F\I of the action ofGσ+ on S. Considering the similarity between the above two Poisson
structures, it would be interesting to find an interpretation of this similarity from the black
hole point of view.

3. Let the computations begin

Throughout the present article, I will use the notations introduced in the previous Section.
To begin with, I will prove that (D, Gσ+, gσ−) does indeed form a quasi-triple.
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Becaused = g⊕ g, one also has a decompositiond∗ = g∗ ⊕ g∗. One also hasd = gσ+ ⊕
gσ− and accordinglyd∗ = gσ+∗ ⊕ gσ−∗. Denotepgσ+ andpgσ− the projections on respectively
gσ+ andgσ− induced by the decompositiond = gσ+ ⊕ gσ−. So that 1d = pgσ+ + pgσ− .

In this article, I express results using mostly the decompositiond = g⊕ g. Using it, we
have

gσ+
∗ = {(ξ, ξ ◦ σ) | ξ ∈ g∗}

and

gσ−
∗ = {(ξ, −ξ ◦ σ) | ξ ∈ g∗}.

Proposition 3.1. The triple (D, Gσ+, gσ−) forms a quasi-triple in the sense of [1]. The char-
acteristic elements of this quasi-triple as defined in [1] and hereby denoted by j, Fσ , ϕσ and
the r-matrix rσ

d are

j : gσ+
∗ −→ gσ−

(ξ, ξ ◦ σ) �−→ ∆σ− ◦ K−1(ξ),

and

Fσ = 0,

and

ϕσ :
∧3 gσ+

∗ −→ R

((ξ, σ ◦ ξ), (η, σ ◦ η), (ν, σ ◦ η)) �−→ 2K(K−1(ν), [K−1(ξ), K−1(η)]),

and finally the r-matrix

rσ
d : g∗ ⊕ g∗ −→ g⊕ g

(ξ, η) �−→ 1
2∆σ− ◦ K−1(ξ + η ◦ σ).

Notice here that it is crucial forσ to be of order no higher than 2, otherwise one would
fail to obtain a quasi-triple as in the above Proposition.

Proof. It is straightforward to prove thatd = gσ+ ⊕ gσ− and that bothgσ+ andgσ− are isotropic
in (d, 〈 〉). This proves that (D, Gσ, gσ−) is a quasi-triple.

For (ξ, ξ ◦ σ) in gσ+
∗ and (x, σ(x)) in gσ+

〈j(ξ, ξ ◦ σ), (x, σ(x))〉 = (ξ, ξ ◦ σ)(x, σ(x)).
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The mapj is actually characterised by this last property. The equality

〈∆σ
− ◦ K−1 ◦ ∆σ∗

+ (ξ, ξ ◦ σ), (x, σ(x))〉 = (ξ, ξ ◦ σ)(x, σ(x)),

proves that

j(ξ, ξ ◦ σ) = ∆σ
− ◦ K−1 ◦ ∆σ∗

+ (ξ, ξ ◦ σ) = ∆σ
− ◦ K−1(ξ).

Sinceσ is a Lie algebra morphism, we have [gσ−, gσ−] ⊂ gσ+. This proves thatFσ :∧2 gσ+
∗ −→ gσ−, given by

Fσ(ξ, η) = pgσ− [j(ξ), j(η)],

vanishes.
I will now computeϕσ . It is defined as

ϕσ((ξ, σ ◦ ξ), (η, σ ◦ η), (ν, σ ◦ ν)) = (ν, σ ◦ ν) ◦ pgσ+ ([j(ξ, σ ◦ ξ), j(η, σ ◦ η)])

= 〈j(ν, σ ◦ ν), [j(ξ, σ ◦ ξ), j(η, η ◦ η)]〉
= 〈∆σ

− ◦ K−1(ν), [∆σ
− ◦ K−1(ξ), ∆σ

− ◦ K−1(η)]〉
= 2K(K−1(ν), [K−1(ξ), K−1(η)]).

Finally, ther-matrix is defined as

rσ
d : gσ+

∗ ⊕ gσ−∗ −→ gσ+ ⊕ gσ−
((ξ, ξ ◦ σ), (η, η ◦ σ)) �−→ (0, j(ξ, ξ ◦ σ)).

If (ξ, η) is ind∗ = g∗ ⊕ g∗ then its decomposition ingσ+
∗ ⊕ gσ−∗ is (1/2)((ξ + η ◦ σ, ξ ◦ σ +

η), (ξ − η ◦ σ, −ξ ◦ σ + η)). The result follows. �

I now wish to compute the bivectorPσ
D on D. By definition, it is equal to (rσ

d )
λ − (rσ

d )
ρ,

where the upper scriptλ means the left invariant section ofΓ (TD ⊗ TD) generated byrσ
d ,

while the upper scriptρ means the right invariant section ofΓ (TD ⊗ TD) generated byrσ
d .

Proposition 3.2. Identify TdD to d by right translations. The value of Pσ
D at d = (a, b) is

d∗ = g∗ ⊕ g∗ −→ d = g⊕ g
(ξ, η) �−→ 1

2(K−1(η ◦ σ ◦ (Adσ(b)a−1 − 1)), −K−1(ξ ◦ σ ◦ (Adσ(a)b−1))).

Proof. Fix d = (a, b) in D. I choose to trivialise the tangent bundle, and its dual, ofD by
using right translations. See (rσ

d )
ρ as a map fromT ∗D to TD. If α is in d∗, then

(rσ
d )

ρ(d)(αρ) = (rσ
d (α))ρ(d),
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whereas

(rσ
d )

λ(d)(αρ) = (Add ◦ rσ
d (α ◦ Add))ρ(d).

ThusPσ
D at the pointd = (a, b) is

d∗ = g∗ ⊕ g∗ −→ d = g⊕ g
(ξ, η) �−→ −1

2∆− ◦ K−1(ξ + η ◦ σ) + 1
2Add ◦ ∆− ◦ K−1(ξ ◦ Ada + η ◦ Adb ◦ σ).

The above description ofPσ
D can be simplified:

Pσ
D(d)(ξ, η) = −1

2∆− ◦ K−1(ξ + η ◦ σ) + 1
2(Ada ◦ K−1(ξ ◦ Ada + η ◦ Adbσ),

− σ ◦ Adσ(b) ◦ K−1(ξ ◦ Ada + η ◦ Adb ◦ σ))

= − 1
2∆− ◦ K−1(ξ + η ◦ σ) + 1

2(K−1(ξ + η ◦ Adbσ ◦ Ada−1),

− σ ◦ K−1(ξ ◦ Adaσ(b)−1 + η ◦ Adb ◦ σ ◦ Adσ(b)−1))

= − 1
2(K−1(ξ + η ◦ σ), −σ ◦ K−1(ξ + η ◦ σ))

+ 1

2
(K−1(ξ + η ◦ σ ◦ Adσ(b)a−1), −σ ◦ K−1(ξ ◦ Adaσ(b)−1 + η ◦ σ))

= 1
2(K−1(η ◦ σ ◦ (Adσ(b)a−1 − 1)), −σ ◦ K−1(ξ ◦ (Adaσ(b)−1 − 1)))

= 1
2(K−1(η ◦ σ ◦ (Adσ(b)a−1 − 1)), −K−1(ξ ◦ σ ◦ (Adσ(a)b−1 − 1))). �

It follows from [1] thatPσ
D is projectable onSσ = D/Gσ+. Actually, the following is also

true

Proposition 3.3. The bivector Pσ
D is projectable to a bivector Pσ

S on S = D/G+. Identify
S with G through the map

D −→ G

(a, b) �−→ ab−1.

Trivialise the tangent space to G, and hence to S, by right translations. If s is in S, then
using the above identification Pσ

S at the point s is

Pσ
S (s)(ξ) = 1

2(Adσ(s)−1 − Ads) ◦ σ ◦ K−1(ξ). (3)

Following a suggestion of the referee, one can define the semi-direct product

G̃ = Z2�G,

where the non-trivial element ofZ2 acts onG asσ. If one identifies the component of the
identity of G̃ to Gσ+ and the other component toS, then the action by conjugation of̃G
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to itself restricts to the twisted action(1). This construction might explain the surprising
observation that the bi-vectorPσ

D descends toS. Of course, one still needs to do some work
here since, for example, one needs the groupsD andG to be connected in order to apply
the results of[1].

Proof. Assumes in S is the image of (a, b) in D, that iss = ab−1. The tangent map of

D −→ G

(a, b) �−→ ab−1

at (a, b) is

p : d −→ g

(x, y) �−→ x − Adab−1y.

The dual map ofp is

p∗ : g∗ −→ d∗

ξ �−→ (ξ, −ξ ◦ Adab−1)

The bivectorPσ
D is projectable ontoS if and only if for all (a, b) in D and ξ in g∗, the

expression

p(Pσ
D(a, b)(p∗ξ))

depends only ons = ab−1. It will then be equal toPσ
S (s)(ξ). This expression is equal to

p(Pσ
D(a, b)(ξ, −ξ ◦ Adab−1)) = 1

2p((Adaσ(b)−1 − 1) ◦ σ ◦ K−1(−ξ ◦ Adab−1),

(1 − Adbσ(a)−1) ◦ σ ◦ K−1(ξ))

= 1
2p((Adσ(ba−1) − Adaσ(a)−1) ◦ σ ◦ K−1(ξ),

(1 − Adbσ(a)−1) ◦ σ ◦ K−1(ξ))

= 1
2(Adσ(ba−1) − Adaσ(a)−1 − Adab−1

+ Adaσ(a)−1) ◦ σ ◦ K−1(ξ)

= 1
2(Adσ(ba−1) − Adab−1) ◦ σ ◦ K−1(ξ).

This both proves thatPσ
D is projectable onS and gives a formula for the projected

bivector. �

To prove that there exists a quasi-Poisson action ofGσ on (S, Pσ
S ), I must compute [Pσ

S , Pσ
S ],

where [,] is the Schouten-Nijenhuis bracket on multi-vector fields.
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Lemma 3.4. For x, y and z in g, let ξ = K(x), η = K(y) and ν = K(z). We have

1
2[Pσ

S (s), Pσ
S (s)](ξ, η, ν) = 1

4K(x, [y, τs(z)] + [τs(y), z] − τs([y, z])),

where τs = Ads ◦ σ − σ ◦ Ads−1.

Proof. Let (a, b) in D be such thats = ab−1. Let p be as in the proof ofProposition 3.3.
The bivectorPσ

S (s) is p(Pσ
D(a, b)). Hence,

[Pσ
S (s), Pσ

S (s)] = p([Pσ
D(a, b), Pσ

D(a, b)]).

But it is proved in[1] that

[Pσ
D(a, b), Pσ

D(a, b)] = (ϕσ)ρ(a, b) − (ϕσ)λ(a, b).

Hence

1
2[Pσ

S (s), Pσ
S (s)] = p((ϕσ)ρ(a, b)) − p((ϕσ)λ(a, b)).

Now, it is tedious but straightforward and very similar to the above computations to check
that

p((ϕσ)ρ(a, b))(ξ, η, ν) = 1
4K(x, [y, τs(z)] + [τs(y), z] − τs([y, z])),

and

p((ϕσ)λ(a, b))(ξ, η, ν) = 0. �

The groupD acts onS = D/G+ by multiplication on the left. This action restricts to an
action ofGσ+ on S. IdentifyingG andGσ+ via ∆σ+, this action is

G × S −→ S

(g, s) �−→ gsσ(g)−1.

The infinitesimal action ofg at the points in S reads

g −→ TsS � g
x �−→ x − Ads ◦ σ(x),

with dual map

T ∗
s S � g∗ −→ g∗

ξ �−→ ξ − ξ ◦ Ads ◦ σ.
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Denote by (ϕσ)S the induced trivector field onS. If ξ, η andν are ing∗ then

(ϕσ)S(s)(ξ, η, ν) = ϕσ(ξ − ξ ◦ Ads ◦ σ, η − η ◦ Ads ◦ σ, ν − ν ◦ Ads ◦ σ).

Computing the right hand side in the above equality is a simple calculation which proves
the following Lemma.

Lemma 3.5. The bivector field Pσ
S and the trivector field (ϕσ)S satisfy

1
2[Pσ

S , Pσ
S ] = (ϕσ)S.

To prove that the action ofGσ+ on (S, Pσ
S ) is indeed quasi-Poisson, there only remains to

prove thatPσ
S is Gσ+-invariant.

Lemma 3.6. The bivector field Pσ
S is Gσ+-invariant.

Proof. Fix G in G � Gσ+. DenoteΣg the action ofG onS. The tangent map ofΣg ats ∈ S

is

TsS � g −→ Tgsσ(g)−1S � g
x �−→ Adgx.

Also, if ξ is in g∗

Pσ
S (gsσ(g)−1)(ξ) = 1

2(Adgσ(s)−1σ(g)−1 − Adgsσ(g)−1) ◦ σ ◦ K−1(ξ)

= 1
2Adg ◦ (Adσ(s)−1 − Ads) ◦ Adσ(g)−1 ◦ σ ◦ K−1(ξ)

= Adg(Pσ
S (s)(ξ ◦ Adg)) = (Σg)∗(Pσ

S )(�g(s))(ξ). �

Lemma 3.7. Let s be in S. The image of Pσ
S (s) is

ImPσ
S (s) = {(1 − Ads ◦ σ) ◦ (1 + Ads ◦ σ)(y)|y ∈ g}.

In particular, it is included in the tangent space to the orbit through s of the action of Gσ .

Proof. The image ofPσ
S (s) is byProposition 3.3

ImPσ
S (s) = {(Adσ(s)−1 − Ads)σ(x)|x ∈ g}.

The Lemma follows by settingx = Ads ◦ σ(y) = σ ◦ Adσ(s)(y) and noticing that (1−
(Ads ◦ σ)2) = (1 − Ads ◦ σ) ◦ (1 + Ads ◦ σ). �

This finishes the proof ofTheorem 2.1.
ChooseG andσ as inTheorem 2.2. The trivector field [Pσ

S , Pσ
S ] is tangent to the orbit

of the action ofGσ+ on S. These orbits are of dimension at most 2, therefore the trivector
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field [Pσ
S , Pσ

S ] vanishes andPσ
S defines a Poisson structure on SL(2,R) which is invariant

under the action

SL(2,R) × SL(2,R) −→ SL(2,R)

(g, s) �−→ gsσ(g)−1.

Lemma 3.7and a simple computation prove that along the orbit of the identity, the bivector
field Pσ

S vanishes; and that elsewhere, its image coincides with the tangent space to the
orbits of the above action. Recall that in[4], the domainI is given by

z(τ, θ, ρ) =
[

sinh(ρ2) + cosh(ρ2)cos(τ) exp(θ)cosh(ρ2)sin(τ)

− exp(−θ)cosh(ρ2)sin(τ) −sinh(ρ2) + cosh(ρ2)cos(τ)

]
. (4)

This formula also defines coordinates onI. Using Formula(3) of Proposition 3.3and a
computer, it is easy to check thatPσ

S if indeed given by Formula(2). This ends the proof of
Theorem 2.2.

4. Final remarks

One might ask how different is the quasi-Poisson action ofGσ+ on (S, Pσ
S ) from the

usual quasi-Poisson action ofG+ on (S, PS). For example, if one takesG = SU(2),H =[
1 0

0 −1

]
andσ = AdH then the multiplication on the right in SU(2) by

[
i 0

0 −i

]
defines

an isomorphism between the two quasi-Poisson actions.
Nevertheless, in the example ofTheorem 2.2, the two structures are indeed different since

for example the action of SL(2,R) on itself by conjugation has two fixed points whereas
the action of SL(2,R) on itself used inTheorem 2.2does not have any fixed point.
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